Ridge Stochastic Restricted Estimators in Semiparametric Linear Measurement Error Models

author

  • Hadi Emami Department of Statistics, University of Zanjan, Zanjan, Iran
Abstract:

In this article we consider the stochastic restricted ridge estimation in semipara-metric linear models when the covariates are measured with additive errors. The development of penalized corrected likelihood method in such model is the basis for derivation of ridge estimates. The asymptotic normality of the resulting estimates are established. Also, necessary and sufficient conditions, for the superiority of the proposed estimator over its counterpart, for selecting the ridge parameter k are obtained. A Monte Carlo simulation study is also performed to illustrate the finite sample performance of the proposed procedures. Finally theoretical results are applied to Egyptian pottery Industry data set.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Detection of Outliers and Influential Observations in Linear Ridge Measurement Error Models with Stochastic Linear Restrictions

The aim of this paper is to propose some diagnostic methods in linear ridge measurement error models with stochastic linear restrictions using the corrected likelihood. Based on the bias-corrected estimation of model parameters, diagnostic measures are developed to identify outlying and influential observations. In addition, we derive the corrected score test statistic for outliers detection ba...

full text

Influence Measures in Ridge Linear Measurement Error Models

Usually the existence of influential observations is complicated by the presence of collinearity in linear measurement error models. However no method of influence measure available for the possible effect's that collinearity can have on the influence of an observation in such models. In this paper, a new type of ridge estimator based corrected likelihood function (REC) for linear measurement e...

full text

Stochastic Restricted Two-Parameter Estimator in Linear Mixed Measurement Error Models

In this study, the stochastic restricted and unrestricted two-parameter estimators of fixed and random effects are investigated in the linear mixed measurement error models. For this purpose, the asymptotic properties and then the comparisons under the criterion of mean squared error matrix (MSEM) are derived. Furthermore, the proposed methods are used for estimating the biasing parameters. Fin...

full text

A New Ridge Estimator in Linear Measurement Error Model with Stochastic Linear Restrictions

In this paper, we propose a new ridge-type estimator called the new mixed ridge estimator (NMRE) by unifying the sample and prior information in linear measurement error model with additional stochastic linear restrictions. The new estimator is a generalization of the mixed estimator (ME) and ridge estimator (RE). The performances of this new estimator and mixed ridge estimator (MRE) against th...

full text

detection of outliers and influential observations in linear ridge measurement error models with stochastic linear restrictions

the aim of this paper is to propose some diagnostic methods in linear ridge measurement error models with stochastic linear restrictions using the corrected likelihood. based on the bias-corrected estimation of model parameters, diagnostic measures are developed to identify outlying and influential observations. in addition, we derive the corrected score test statistic for outliers detection ba...

full text

Semiparametric estimators of functional measurement error models with unknown error

We consider functional measurement error models where the measurement error distribution is estimated non-parametrically.We derive a locally efficient semiparametric estimator but propose not to implement it owing to its numerical complexity. Instead, a plug-in estimator is proposed, where the measurement error distribution is estimated through non-parametric kernel methods based on multiple me...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 17  issue None

pages  181- 203

publication date 2018-12

By following a journal you will be notified via email when a new issue of this journal is published.

Keywords

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023